A mathematical model for animal stripes

The back of a tiger could have been a blank canvas. Instead, nature painted the big cat with parallel stripes, evenly spaced and perpendicular to the spine. Scientists don't know exactly how stripes develop, but since the 1950s, mathematicians have been modeling possible scenarios. In Cell Systems on December 23, Harvard researchers assemble a range of these models into a single equation to identify what variables control stripe formation in living things.

"We wanted a very simple model in hopes that it would be big picture enough to include all of these different explanations," says lead author Tom Hiscock, a PhD student inSean Megason's systems biology lab at Harvard Medical School. "We now get to ask what is common among molecular, cellular, and mechanical hypotheses for how living things orient the directions of stripes, which can then tell you what kinds of experiments will (or won't) distinguish between them."

Stripes are surprisingly simple to model mathematically (and much of the early work on the subject was by Alan Turing of "The Imitation Game" fame). These patterns emerge when interacting substances create waves of high and low concentrations of, for example, a pigment, chemical, or type of cell. What Turing's model doesn't explain is how stripes orient themselves in one particular direction.

Read more....